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S4.1 Summary

Here we report the details of the case studies used in the main text. Each section
considers a case study, presenting first the mathematical model (as a kinetic
model based on ordinary differential equations), together with the nominal val-
ues of the model parameters. Then we discuss how the pseudo-experimental data
was obtained. Usually more than one set of experimental data was considered:
one set for calibration, and another set for cross-validation. The experimen-
tal conditions subsections give details on sampling times, stimuli levels and
profiles, initial conditions, etc. The resulting data sets can be found in Addi-
tional File 2. Finally, the calibration subsections give details on the estimated
parameters, numerical settings of the solvers and other practical considerations.

S4.2 Biomass batch growth (BBG)

S4.2.1 Mathematical model

This model describes microbial growth in a stirred fed-batch bioreactor as de-
scribed by Rodriguez-Fernandez [I], but neglecting the inflow. It is a simple
description of the conversion of substrate to biomass. The simplified scheme of
the reactions can be seen in figure The dynamic equations and observ-
ables are written as

dCl CsCy

at R
dCs pmax  CsCh
it yield K, + C, (S4.2.1)

91(t) = Co(t)
92(t) = Cs(t)
where C}, is the concentration of the microbes and Cy denotes the concentration

of substrate. Both states can be observed. The model parameters and their
nominal values can be found in Table
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Figure S4.2.1: Biomass batch growth model. Substrate S is transferred to
biomass B.

Table S4.2.1: Biomass batch growth model parameters, nominal values and
optimization bounds.

Par. id Nominal UB LB

Mmax 0.4 100 10°°
K 5 100 107°
Ky 0.05 100 107°

yield 0.5 100 107°

S4.2.2 Experimental conditions

Here we discuss how the data was generated for model calibration and cross-
validation.

S4.2.2.1 Model calibration

The model equations were solved using the nominal parameters and the ini-
tial conditions C,(0) = 2 (g/1) and C5(0) = 30 (g/1) for the time interval
t € [0, 12] hours. The observation functions were evaluated at time points
t; = 2,4, 6,8, 10, 12 to obtain their nominal values. Then random numbers
were added to the nominal values to simulate the measurement error. The dis-
tributions were taken as Gaussian with zero mean and the following standard
deviation: o;; = 0.1g;(t;) + 0.1, aproximately resulting in a constant noise to
signal ratio (proportional error) with a threshold at 0.1, i.e. the signals smaller
than 0.1 cannot be decomposed from the measurement noise. Small negative
values were corrected by taking their absolute value. To obtain N calibration
datasets with different noise realization, the procedure was repeated N times.

S4.2.2.2 Model cross-validation

To obtain data for model cross-validation the same procedure described above
was used, but the initial conditions of the states were also randomly chosen from
a meaningful range. The exact values can be found in Additional File 2. Ten
datasets were generated for model cross-validation.



S4.2.3 Calibration

All the 4 model parameters were estimated in this case study. The bounds of
the parameters for the optimization are given in Table

S4.3 FitzHugh-Nagumo model (FHN)

S4.3.1 Mathematical model

The FitzHugh-Nagumo model, as presented in [2] B], describes the voltage (V)—
current (R) relationship across an exon membrane. The model equations with
one observable are:

% =~v(V-V3/3+R)
% — _1/7(V —a+ BR) (S4.3.2)
gi(t) = V(1)

The model parameters to be estimated, are listed in Table

Table S4.3.2: FitzHugh-Nagumo model parameters to be estimated: nominal
values and bounds.

Par. id Nominal UB LB

a 0.2 10° 10°°
B 0.2 10° 10°°
~ 3 10° 1075

S4.3.2 Experimental conditions
S4.3.2.1 Calibration

The model equations were solved using the nominal parameters, the initial
conditions V(0) = —1 and R(0) = 1 for the time interval ¢ € [0, 20] unit.
The observation function was evaluated at 6 time points equidistantly as ¢ =
linspace(1, 20, 6) to obtain its nominal values. Then the experimental data was
generated similarly as in the first case study, with a standard deviation of 10%
of the nominal signal level, and a detection threshold for the observable of 0.1.
This procedure was used to generate 6 data points for each of the 10 model
calibration problems.

S4.3.2.2 Cross-validation

We followed the same procedure as for the model calibration, but the initial
conditions of the states were randomly changed inside a meaningful range.

S4.3.3 Calibration

In model calibration, all the 3 model parameters were estimated. The parameter
bounds for the optimization algorithm can be found in Table [S4:3.2]



S4.4 Kholodenko MAPK signalling pathway (MAPK)

S4.4.1 Mathematical model

This case study considers the MAPK signalling pathway model originally pre-
sented in [4]. This model is also available from the Biomodels database [5]
(BIOMD0000000010 - Kholodenko2000 - Ultrasensitivity and negative feedback
bring oscillations in MAPK cascade). The model equations are
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where the state variable x1, =5 ...zs denote the concentration of species Mos,
Mos-P, Mekl, MKK-P, Mekl-PP, Erk2, Erk2-P, Erk2-PP, respectively. The
model parameters are collected in Table[S4.4.3] It is assumed that only the state
variables x5 (Mos-P) and z7 (Erk2-P) can be measured in the experiments.

S4.4.2 Experimental conditions
S4.4.2.1 Calibration

The model equations were solved using the nominal parameters, and the ini-
tial conditions x(0) = [90, 10, 280, 10, 10, 280, 10, 10]* for the time interval
t € [0, 1000] (arbitrary units). The two observation functions were evaluated
at 10 time points for ¢; = [50, 100, 150, 200, 300, 400, 500, 600, 800, 1000] to
obtain the nominal values. Psuedo-experimental data were generated as in the
first case study, with a standard deviation of 10% of the nominal signal level
and a detection threshold of 0.5. This procedure generated 20 data points (2
observables and 10 time points per observable) for model calibration.

S4.4.2.2 Cross-validation

For the model cross-validation we generated the data similarly as for the model
calibration, but the initial conditions of the states were randomly changed within
a meaningful range. The exact values used can be found in Additional File 2.



Table S4.4.3: Kholodenko MAPK Signalling pathway model parameters. The
parameters for which the lower bounds (LB) and upper bounds (UB) are given
are the estimated parameters. The other parameters are fixed at their nominal
values.

Param. id. Nominal LB UB

JO_V1 2.5 50 0.01
JO_Ki 9

JO_n 1

JO_K1 10

J1_.V2 0.25 50 0.01
J1_KK2 8

J2.k3 0.025

J2_KK3 15

J3 k4 0.025

J3_KK4 15

J4_.V5h 0.75 50 0.01
J4_KK5 15

J5_V6 0.75 50 0.01
J5_KK6 15

J6._k7 0.025

J6_KK7 15

J7.k8 0.025

J7_KKS8 15

J8_V9 0.5 50 0.01
J8_KK9 15

J9_V10 0.5 50 0.01
J9_KK10 15




S4.4.3 Calibration

In the model calibration procedure 6 model parameters were estimated. The
parameter bounds for the optimization algorithm can be found in Table [S4.3.2]
The estimated parameters are the ones for which the bounds are given in the
table.

S4.5 Goodwin oscillator model (GOsc)

S4.5.1 Mathematical model

The Goodwin oscillator [6] is one of the simplest models of oscillatory genetic
networks (see Figure . In its original form, three state variables x1, x2
and z3 describe RNA, protein and an end product concentrations. The model
equations with two observables can be stated as

dx

7; = lezn/(KZn + I‘g) — k’g:l?l

d

% = ]{33171 — k4$2

drs . (S4.5.3)
dt = R5T2 613

Gi1(t) = x1(t)
g2(t) = w3(t)

where we assumed that the RNA level and the end product concentration can
be measured. The model parameters are given in Table

S4.5.2 Experimental conditions
S4.5.2.1 Calibration

The model equations were solved using nominal parameters and initial condi-
tions x1(0) = 0.1, 22(0) = 0.2, x3 = 2.5 for the time interval ¢ € [0, 240] units.
The observation functions were evaluated at 10 time points equidistantly as
t = linspace(0,240, 10) to obtain their nominal values. Pseudo-experimental
data was generated as above with standard deviation 10% of the nominal signal
level and detection thresholds of 0.003 and 0.1 for the two observables. This
procedure was used to generate 20 data points for model calibration.

Figure S4.5.2: Schematic reaction scheme of Goodwin’s oscillator.



Table S4.5.4: Goodwin oscillator: model parameters, nominal values and opti-
mization bounds.

Par. id Nominal UB LB

k1 1 1000 0.001
ko 0.1 1000 0.001
ks 1 1000 0.001
k4 0.1 1000 0.001
ks 1 1000 0.001
ke 0.1 1000 0.001
K; 1 1000 0.001

n 10 12 1

S4.5.2.2 Cross-validation

For model cross-validation, we generated pseudo-data similarly as for model
calibration, but the initial conditions of the states were randomly changed inside
a meaningful range. The exact values used are given in Additional File 2.

S4.5.3 Calibration

All seven parameters were estimated in the model calibration procedure. The
parameter bounds for the optimization algorithm can be found in Table
Although the model is small, its oscillatory nature results in objective functions
with many local minima.

S4.6 TGF- [ signalling pathway model (TGFB)

S4.6.1 Mathematical model

Geier and co-authors [7] presented a tutorial paper on parameter estimation in
kinetic models where this TGF-£ signalling pathway model [§] was used as a



r1 = k1CTGFb.TGFbR
re = koCrarbrOTGFD

r3 = k3Crarbrarbr(l — e
r4 = k4CTGFb_TGFbR_P

rs5 = ksC1aFb-TGFbR-PCI_Smad
76 = k6CI_Smad_TGFb_TGFbR_P
r7 = k70Smad CTaFb_TGFLR_P
rg = kgCsmad

r9 = kgCsmad N

710 = k102Csmad PCsmad_pP

r11 = k11CSmad_P_Smad_P

r12 = k10CSmad PCCoSmad

713 = k11CSmad_P_CoSmad

T14 = k8CCOSmad

r15 = k9CCoSmad N

(t*kzo

case study. The dynamic model equations are
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As in [7], we also assume that all the concentrations, except the Smad RNAs
(Cr8mad.mrNA1 and CI_smad_mRNA2), can be observed in the experiments. The
model parameters can be found in Table

S4.6.2 Experimental conditions

Following the procedure described in [7], the initial conditions of the dynamic
state variables were determined by finding their steady states. For this cal-
culation, we took Cyarpbr(0) = 1, Csmad(0) = 60 and Ccogmad(0) = 60, the
initial concentrations of the other species as zero, and k3 = 0 to temporarily
remove the stimuli from the model. Then, simulations were performed for a
suitable long time to obtain the steady state values of the variables. Finally,
the value of Crgrp, was set to 1.0 and the nominal value (0.01) of k3 was re-set.



Table S4.6.5: TGF-4 signalling pathway parameters

Par. id Nominal UB LB
k1 0.00015 0.1 1076
ko 0.023 1 0.0001
ks 0.01 not estimated
k4 0.01 1 1076
ks 0.01 1 0.0001
ke 0.1 1 10~6
k7 0.000404 1 106
ks 0.0026 1 107°
kg 0.0056 1 10-5

k1o 0.002 1 1076
k11 0.016 1 10~
k1o 5.7 100 0.1

kis  0.00657 1 105
K14 0.0017 1 1075
kis 1 100 0.001
kg 0.0008 0.1 10-°
k17 0.001 0.1 105
k1s 0.0021 0.1 10-°
k19 0.001 0.1 10°
ka0 9000

3 1800 not estimated
21

The numerical values of the steady state initial condition can be seen in Table
54.6.6!

The model equations were solved using the nominal parameters and the
nominal initial conditions for the time interval ¢ € [0, 18000] seconds. The
observation functions were evaluated at 15 time points equidistantly as ¢ =
linspace(0, 18000, 15) to obtain their nominal values. Pseudo-experimental data
was generated using a standard deviation of 10% of the nominal signal level,
while the detection thresholds for each observable was set to approximately
1% of their maximum level. This procedure generated 240 data points (16
observables, 15 time points per observable) for the model calibration.

S4.6.2.1 Cross-validation

We generated the data as in the previous subsection but the initial conditions of
the states were randomly changed inside a meaningful range. The stimuli dura-
tion and initiation time parameters (koo and ko) were also randomly changed
to generate 10 datasets for model cross-validation.

S4.6.3 Calibration

We used the same bounds on the parameters as reported in [7]. Note that
parameters ks, koo and ko1 are related to the Smad inhibition stimuli and they
are not estimated. Parameter k3 determines the strength of the inhibitor, while
koo and ko respectively controls the appearance and duration of the inhibition.

10



Table S4.6.6: Nominal initial conditions for the TGF-8 Pathway model

State name Nominal initial condition

Crarp 1.0

CTcerbR 1.0
CTGFb.TGFbR 0.0
CTGFb. TGFbRp 0.0
C1.Smad_ TGFb_TGFbR_P 0.0
C'Smad 40.98

CSmadp 0.0

C'CoSrnaLd 34.15
CSmad,P,Smad,P 0.0
CSmad_P_CoSmad 0.0
Csmad N 19.02
CSmad_P_Smad_P.N 0.0
CSmad PN 0.0
CVSmad,P,CoSmad,N 0.0
CCOSmad,N 15.85
C1.Smad_.mRNA1 0.0
C1.Smad_ mRNA2 0.0
CLSmad 0.0

S4.7 Three-steps Metabolic Pathway (TSMP)

S4.7.1 Mathematical model

This model describes a simple pathway with three enzymatic steps, as described
in Moles et al[9]. The scheme of the pathway is shown in Figure [S4.7.3

11



S ——> Mie——> M2 ¢——> P

Figure S4.7.3: Three step pathway. S and P are the pathway substrate and
product; M; and M5 are intermediate metabolites of the pathway; E1, Eo, and
E3 are the enzymes; G1, G2, and Gz are the mRNA species for the enzymes, as
described in [9]

The dynamics are given by the following system of differential equations:
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S4.7.2 Experimental condition
S4.7.2.1 Calibration

Here we considered a variant with eight different experimental conditions, de-
fined by different constant levels of substrate (S) and product (P), as given in
the lower part of Table (indicated by calib_expl — calib_exp8). The model
equations with the given stimuli levels were solved using the nominal parame-
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ters, and the initial conditions in Table for the time interval ¢ € [0, 120].
The observation functions were evaluated for each experiment at 21 time points
t = linspace(0, 120, 21) to obtain the nominal values. Pseudo-experimental data
was generated using Gaussian random errors with standard deviation of 10% of
the nominal signal level. The detection thresholds for each observable was set
to 2% of their average nominal values. This procedure resulted in 1344 data
points (8 experiments, 8 observables and 21 time points for each) for model
calibration.

S4.7.2.2 Cross-validation

For model cross-validation we generated the data similarly as for model cali-
bration, but changing the P and S levels. Their numerical values are listed in
Table [S4.7.7] (indicated by valid_expl — valid_exp8)

S4.7.3 Calibration

The calibrated parameters are listed in the top part of Table[S4.7.7] Lower and
upper bounds for each parameter are reported in Additional File 2.

13



Table S4.7.7: Nominal values of parameters and (S,P) values for the 8 experi-
ments considering the 3-Steps Metabolic Pathway

par. name value par. name value par. name value
V1 1.0 V3 1.0 V6 0.1
Kil 1.0 Ki3 1.0 K6 1.0
nil 2.0 ni3 2.0 k_6 0.1
Kal 1.0 Ka3 1.0 kcatl 1.0
nal 2.0 nad 2.0 Kml 1.0
k1 1.0 k.3 1.0 Km2 1.0
V2 1.0 V4 0.1 kcat2 1.0
Ki2 1.0 K4 1.0 Km3 1.0
ni2 2.0 k_4 0.1 Km4 1.0
Ka2 1.0 %) 0.1 kcat3 1.0
na2 2.0 K5 1.0 Km5 1.0
k.2 1.0 k.5 0.1 Km6 1.0
calibration inp.: [S] [P] cross-validation inp.: [S] [P]
calib_exp. #1 0.1 0.05 valid_exp. #1 0.1 0.13572
calib_exp. #2 0.1 1.0 valid_exp. #2 0.1 0.3684
calib_exp. #3 0.464 0.13572 valid_exp. #3 0.464 0.05
calib_exp. #4 0.464 1.0 valid_exp. #4 0.464  0.3684
calib_exp. #5 2.15 0.05 valid_exp. #b5 2.15 0.13572
calib_exp. #6 2.15 0.3684 valid_exp. #6 2.15 1.0
calib_exp. #7 10.0 0.3684 valid_exp. #7 10.0 0.05
calib_exp. #8 10.0 1.0 valid_exp. #8 10.0 0.13572
States initial cond. States initial cond.
G1 0.6667 E2 0.3641
G2 0.5725 E3 0.2946
G3 0.4176 M1 1.419
E1 0.4 M2 0.9346
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S4.8 Chemotaxis Pathway model (CHM)

S4.8.1 Mathematical model

This case study is based on the bacterial chemotaxis model by Bray et al
[10]. The model describes the short term (without adaptation) bacterial re-
sponse to aspartate (Asp) and nickel (Ni?*) ion stimulus. The Asp binding to a
transmembrane protein complex initiates an intracellular phopshorylation cas-
cade, which changes the rotational behaviour of the flagellar motor and thus
the swimming behaviour of the bacterium (see the reaction scheme in Fig-
ure [S4.8.4). The mathematical model is available in the Biomodels Database
(BIOMDO0000000404 - Bray1993_chemotaxis).

The definitions of the reactions and the balance equations for the chemical
species are as follows. The names of the chemical species encoded by the state
variables can be found in Table Apart from the swimming behaviour of
the bacteria, we further assume that some phosphorylated species (listed in the
same table) can be observed. The nominal values of the parameters are listed

.1 | Tal)le L‘ Q.0
ﬁ f :Flagellar

4 +CH, @ M tor ‘\

C =

IIIIIIIIIIII

Figure S4.8.4: Chemotaxis pathway scheme adapted from [10]
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=(1/cell) -
=(1/cell) -
=(1/cell) -
=(1/cell) -
=(1/cell) -
=(1/cell) -
=(1/cell) -
=(1/cell) -
=(1/cell) -
=(1/cell) -

=(1/cell) -

(rp-rl + rpr2 4+ rp_r3 — rpr5 — rp_r9)

(=rp-r9 + rp-rl0)

(rp-r9 — rp_r10)

(—rpr8 + rp_r8)

(rp-rd — rp_r5 — rp_r6 + rp_r7 + rp_r8)

(=rp-rd + rp-r5 + rp-r6 — rpr7 — rp_r8 — rm_rl — rm_r2 — rm_r3 — rm-r4)
(—=rm-rl)

(rm-rl — rm_r2)

(rm-r2 — rm_r3)

(rm-r3 — rm_rd)

(rm_rd)

S4.8.2 Experimental conditions

S4.8.2.1

Calibration

We considered two experimental conditions, each one corresponding to a dif-
ferent stepwise profile of the Asp level. The 3-step concentration profiles of
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Table S4.8.8: Parameters of the chemotaxis pathway model

Param. Name Nom. value | Param. Name Nom. value

pl rprl_kecat 0.001 p30  rrr10.k2 1

p2 rpr2.kecat 75000 p3l rrrllkl 400000

p3 rpr3_kcat 200000 p32 rrrll k2 1

p4 rprdkl 100000000 p33 rrril2.kl 400000

p5 rprbkl 200000 p34  rrrl2.k2 1

p6 rpr6_kcat 0 p35 rrrl13 .kl 400000

p7 rpx7.kl 0.037 p36 rrr13.k2 1

p8 rpr8.kl 500000 p37 rrrld kl 0.1

p9 rpr9kl 1000000 p38  rrrld k2 1
pl0 rprl10kl 1 p39 rrri15kl 0.01
pll  rrrlkl 1000000 p40  rrr15.k2 1
pl2  rrrl k2 1 p4l  rrrl16.kl 0.4
pl3 rrr2.kl 1000 p42  rrrl16.k2 1
pld  rrr2.k2 1 p43 rrrl17.kl 0.4
pl5 rrr3._kl 100000 p44  rrrl7.k2 1
pl6 rrr3._k2 1 p45 rrri18.kl 0.4
pl7 rrrd kl 10000 p46  rrr18. k2 1
pl8 rrrd k2 1 p47  rr.1kl 1000000
pl9 rrrbkl 100000 p48 rr.1.k2 1
p20  rrrb k2 1 p49 rr 2.kl 1000000
p21  rrr6.kl 400000 pd50  rr2.k2 1
p22 rrr6.k2 1 p5l  rr3.kl 1000000
p23  rrr7.kl 400000 p52  rr.3.k2 1
p24  rrr7.k2 1 P53 cell 1.41E-15
p25 rrr8.kl 400000 pHd  « 0.14
p26  rrr8.Kk2 1 pPd5 kK 2.25E-07
p27 rrr9.kl 100000 pH6  ka 0.1
p28 rrr9.k2 1 pb7  ni 0
p29 rrrl10.kl 10000 p58 p2 0.997
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Asp for these two experiments are given in the lower part of Table (in-
dicated by calib_expl and calib_exp2). The model equations with the given
stimuli profiles were solved using the nominal parameters, and the initial condi-
tions in Table for the time interval ¢ € [0, 180] seconds. The observation
functions were evaluated at 10 time points in each experiment at time points
t = linspace(0, 180, 10) to obtain the nominal values. Pseudo-experimental data
was generated with standard deviation of 5% of the nominal signal level. Detec-
tion threshold for each observable was set to 2% of the maximum observation
values. This procedure resulted in 160 data points (2 experiments, 8 observables
and 10 time points for each) for model calibration.

S4.8.2.2 For cross-validation

For model cross-validation, we generated pseudo-data as above but with changed
stimulus level. Their numerical values are listed in Table [S4.8.9| (indicated by
valid_expl and valid_exp2). Numerical values can be found in Additional File
2.

S4.8.3 Calibration

Before the model calibration a parameter sensitivity analysis was performed.
This showed the lack of sensitivity of the outputs with respect to some parame-
ters. These parameters belong to the Ni stimulus reactions and the correspond-
ing part of the pathway. Since in the experiments considered no Ni stimulus is
applied, these parameters are inactive and their values cannot be estimated.

The remaining 38 estimated parameters are pl, p2, p4, pb, p7-pl12, pl5-p36
and p47-p52 (see Table for the naming convention). The lower and upper
bounds of these parameters were set as LB = ppom x 107° and UB = ppom x 10,
where ppom is the nominal value of the parameters.

Further, note that the parameters have very different ranges which would
lead to numerical issues in the optimization. To avoid this, the parameters
were scaled for the calibration, such that their range should overlap. The scaled
values are reported in the Additional File 2.
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Table S4.8.9: Initial values and input variables for the chemotaxis model

States Name Initial value States Name Initial value

x2 T 3.12E-06 x15 Tni-WA 0

x3 Tasp 0 x16 A 3.00E-06

x4 Tni 0 x17 Ap 3.48E-08

x5 w 2.89E-06 x18 B 1.93E-06

x6 ™ 5.91E-07 x19 Bp 6.87E-08

x7  Tasp.W 0 x20 Z 2.00E-05

x8 Tni-W 0 x21 Y 9.90E-06

x9 TA 4.44E-07 x22 Yp 7.00E-09

x10 Tasp_A 0 x23 M 6.24E-09

x11 Tni_ A 0 x24 MYp 7.77E-10

x12 WA 6.78E-07 x25 MYpYp 2.99E-10

x13 TWA 8.47TE-07 %26 MYpYpYp 3.78E-10

x14 Tasp_-WA 0.00E+4-00 x27 MYpYpYpYp 2.31E-09

Input:  stepwise function of aspartate level
time interval(s): [0-60] [60-120] [120-180]
calib_expl [asp] 0 333-1078% 6.60 - 10~8
calib_exp2 [asp] 2-1077 3.33-107% 1077
valid_expl [asp] 0 1077 21077
valid_exp2 [asp] 3-1077 3.33-107% 1.50 - 1077
Observables:

[Ap], [Bp], [Yp], MYp], MYpYp], MYpYpYp|, [MYpYpYpYp]
Bias = [M+[MY p]
[M]+[MY p]+[MY pY p]+[MY pY pY p]+[MY pY pY pY p]
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